Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114087, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583152

RESUMEN

Microbial invasions underlie host-microbe interactions resulting in pathogenesis and probiotic colonization. In this study, we explore the effects of the microbiome on microbial invasion in Drosophila melanogaster. We demonstrate that gut microbes Lactiplantibacillus plantarum and Acetobacter tropicalis improve survival and lead to a reduction in microbial burden during infection. Using a microbial interaction assay, we report that L. plantarum inhibits the growth of invasive bacteria, while A. tropicalis reduces this inhibition. We further show that inhibition by L. plantarum is linked to its ability to acidify its environment via lactic acid production by lactate dehydrogenase, while A. tropicalis diminishes the inhibition by quenching acids. We propose that acid from the microbiome is a gatekeeper to microbial invasions, as only microbes capable of tolerating acidic environments can colonize the host. The methods and findings described herein will add to the growing breadth of tools to study microbe-microbe interactions in broad contexts.


Asunto(s)
Drosophila melanogaster , Animales , Drosophila melanogaster/microbiología , Microbiota , Acetobacter/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus plantarum/metabolismo , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Ácido Láctico/farmacología
2.
Microbiol Resour Announc ; 12(11): e0060223, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37830846

RESUMEN

Lactiplantibacillus plantarum and Acetobacter tropicalis are bacterial symbionts commonly isolated from decaying fruits and from the microbiome of Drosophila melanogaster. Studies have shown that these organisms interact synergistically, imparting beneficial effects on the host. Here, we report whole-genome sequences of these microbes obtained from long and short reads.

3.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36711873

RESUMEN

Microbial invasions underlie host-microbe interactions that result in microbial pathogenesis and probiotic colonization. While these processes are of broad interest, there are still gaps in our understanding of the barriers to entry and how some microbes overcome them. In this study, we explore the effects of the microbiome on invasions of foreign microbes in Drosophila melanogaster. We demonstrate that gut microbes Lactiplantibacillus plantarum and Acetobacter tropicalis improve survival during invasion of a lethal gut pathogen and lead to a reduction in microbial burden. Using a novel multi-organism interactions assay, we report that L. plantarum inhibits the growth of three invasive Gram-negative bacteria, while A. tropicalis prevents this inhibition. A series of in vitro and in vivo experiments revealed that inhibition by L. plantarum is linked to its ability to acidify both internal and external environments, including culture media, fly food, and the gut itself, while A. tropicalis diminishes the inhibition by quenching acids. We propose that acid produced by the microbiome serves as an important gatekeeper to microbial invasions, as only microbes capable of tolerating acidic environments can colonize the host. The methods described herein will add to the growing breadth of tools to study microbe-microbe interactions in broad contexts.

4.
PLoS Biol ; 19(5): e3001182, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33979323

RESUMEN

Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin's broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate-the most widely used herbicide globally-inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate's mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation-reduction balance. Overall, these findings suggest that glyphosate's environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.


Asunto(s)
Anopheles/efectos de los fármacos , Glicina/análogos & derivados , Melaninas/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Animales , Anopheles/inmunología , Cryptococcus neoformans/patogenicidad , Dípteros/efectos de los fármacos , Dípteros/inmunología , Glicina/metabolismo , Glicina/farmacología , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Infecciones/inmunología , Infecciones/metabolismo , Infecciones/fisiopatología , Insectos/efectos de los fármacos , Insectos/inmunología , Lepidópteros/efectos de los fármacos , Lepidópteros/inmunología , Mariposas Nocturnas/inmunología , Plasmodium falciparum/patogenicidad , Virulencia , Glifosato
5.
mBio ; 11(5)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994322

RESUMEN

Enterobacteria, including Escherichia coli, bloom to high levels in the gut during inflammation and strongly contribute to the pathology of inflammatory bowel diseases. To survive in the inflamed gut, E. coli must tolerate high levels of antimicrobial compounds produced by the immune system, including toxic metals like copper and reactive chlorine oxidants such as hypochlorous acid (HOCl). Here, we show that extracellular copper is a potent detoxifier of HOCl and that the widely conserved bacterial HOCl resistance enzyme RclA, which catalyzes the reduction of copper(II) to copper(I), specifically protects E. coli against damage caused by the combination of HOCl and intracellular copper. E. coli lacking RclA was highly sensitive to HOCl when grown in the presence of copper and was defective in colonizing an animal host. Our results indicate that there is unexpected complexity in the interactions between antimicrobial toxins produced by innate immune cells and that bacterial copper status is a key determinant of HOCl resistance and suggest an important and previously unsuspected role for copper redox reactions during inflammation.IMPORTANCE During infection and inflammation, the innate immune system uses antimicrobial compounds to control bacterial populations. These include toxic metals, like copper, and reactive oxidants, including hypochlorous acid (HOCl). We have now found that RclA, a copper(II) reductase strongly induced by HOCl in proinflammatory Escherichia coli and found in many bacteria inhabiting epithelial surfaces, is required for bacteria to resist killing by the combination of intracellular copper and HOCl and plays an important role in colonization of an animal host. This finding indicates that copper redox chemistry plays a critical and previously underappreciated role in bacterial interactions with the innate immune system.


Asunto(s)
Cobre/farmacología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Ácido Hipocloroso/farmacología , Oxidorreductasas/metabolismo , Animales , Citoplasma/química , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Drosophila melanogaster , Proteínas de Escherichia coli/genética , Femenino , Oxidantes/farmacología , Oxidación-Reducción , Oxidorreductasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...